VR Goggles for Robots: Real-to-sim Domain Adaptation for Visual Control

نویسندگان

  • Jingwei Zhang
  • Lei Tai
  • Yufeng Xiong
  • Ming Liu
  • Joschka Boedecker
  • Wolfram Burgard
چکیده

This paper deals with the reality gap from a novel perspective, targeting transferring Deep Reinforcement Learning (DRL) policies learned in simulated environments to the real-world domain for visual control tasks. Instead of adopting the common solutions to the problem by increasing the visual fidelity of synthetic images output from simulators during the training phase, this paper seeks to tackle the problem by translating the real-world image streams back to the synthetic domain during the deployment phase, to make the robot feel at home. We propose this as a lightweight, flexible, and efficient solution for visual control, as 1) no extra transfer steps are required during the expensive training of DRL agents in simulation; 2) the trained DRL agents will not be constrained to being deployable in only one specific real-world environment; 3) the policy training and the transfer operations are decoupled, and can be conducted in parallel. Besides this, we propose a conceptually simple yet very effective shift loss to constrain the consistency between subsequent frames, eliminating the need for optical flow. We validate the shift loss for artistic style transfer for videos and domain adaptation, and validate our visual control approach in realworld robot experiments. A video of our results is available at: https://goo.gl/b1xz1s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality

We introduce FaceVR, a novel method for gaze-aware facial reenactment in the Virtual Reality (VR) context. The key component of FaceVR is a robust algorithm to perform real-time facial motion capture of an actor who is wearing a head-mounted display (HMD), as well as a new data-driven approach for eye tracking from monocular videos. In addition to these face reconstruction components, FaceVR in...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

VR THOR - Virtual reality training with hotstick on operations risks

In this work we present a simulator system for training operation and maintenance of power grids distribution lines with focus on workplace safety and risk control of fuse cutout activities. The student uses a VR goggles to visualize the virtual environment (Oculus Rift) and maneuver a real bat to interact with the 3D environment, both tracked by a high precision infrared camera system (OptiTra...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00265  شماره 

صفحات  -

تاریخ انتشار 2018